Math Rules Cyberspace

Travis H.

Stanford University, 16-17 Apr 2011

Intro

- Play clip 1 Cryptografie, Cryptografia intro clip (2:18)

Web Sites

Castles on the Internet

- Have a practical purpose so can never be perfect
- More valuable the data, the stronger it must be

Web Sites

Castles on the Internet

- Have a practical purpose so can never be perfect
- More valuable the data, the stronger it must be
- Always under attack

Web Sites

Castles on the Internet

- Have a practical purpose so can never be perfect
- More valuable the data, the stronger it must be
- Always under attack

Web Sites

Castles on the Internet

- Have a practical purpose so can never be perfect
- More valuable the data, the stronger it must be
- Always under attack

Firewalls
 Keeping Bad Guys Out

- But a real firewall has to let something in or out
- Every castle must have one door
- Otherwise there's no point

What Really Is a Hacker?

- Most people only see superficial details
- A hacker wants to understand the Matrix
- Not necessarily malicious

Hackers

- Play clip 2 from the movie Hackers, typical 90s stereotype (3:57)

Web Sites

System Crackers are Malicious Hackers

 The Internet Ninjas

- Powers of invisibility
- Like to wear black
- Strike without warning
- Leave no trace
- Make most people uncomfortable

Web Sites

System Crackers are Malicious Hackers

The Internet Ninjas

- Powers of invisibility
- Like to wear black
- Strike without warning
- Leave no trace
- Make most people
uncomfortable

Web Sites

System Crackers are Malicious Hackers

The Internet Ninjas

- Powers of invisibility
- Like to wear black
- Strike without warning
- Leave no trace
- Make most people uncomfortable

Web Sites

System Crackers are Malicious Hackers

The Internet Ninjas

- Powers of invisibility
- Like to wear black
- Strike without warning
- Leave no trace
- Make most people uncomfortable

Web Sites

System Crackers are Malicious Hackers

 The Internet Ninjas

- Powers of invisibility
- Like to wear black
- Strike without warning
- Leave no trace
- Make most people uncomfortable

Web Sites

System Crackers are Malicious Hackers

The Internet Ninjas

- Powers of invisibility
- Like to wear black
- Strike without warning
- Leave no trace
- Make most people uncomfortable

White Hat Hackers

- Play clip 2, news on White Hat Hackers (2:33)

Security Experts

Internet Jedi

- No effective law enforcement on Internet, like Wild West
- No regulation of software industry
- Nobody to protect people from vendors and crackers

Security Experts

Internet Jedi

- No effective law enforcement on Internet, like Wild West
- No regulation of software industry
- Nobody to protect people from vendors and crackers

Security Experts

Internet Jedi

- No effective law enforcement on Internet, like Wild West
- No regulation of software industry
- Nobody to protect people from vendors and crackers

Security Experts

Cryptologists

There Are Temptations

Computer Security
Cryptology
Shift Ciphers
Substitution Ciphers
Advanced Material

Web Sites
Hackers
System Crackers
Security Experts
Cryptologists

Cryptologists

Modern Wizards

 АЮГОї Т	

- Start off very weak
- Require many years to develop their powers
- Pore over dusty tomes to find the information they need
- Books are incomprehensible to others
- Full of weird symbols and obscure incantations

Computer Security
Cryptology
Shift Ciphers
Substitution Ciphers
Advanced Material

Web Sites
Hackers
System Crackers
Security Experts
Cryptologists

Cryptologists

Modern Wizards

- Start off very weak
- Require many years to develop their powers
- Pore over dusty tomes to find the information they need
- Books are incomprehensible to others
- Full of weird symbols and obscure incantations

Web Sites
Hackers
System Crackers
Security Experts
Cryptologists

Cryptologists

Modern Wizards

- Start off very weak
- Require many years to develop their powers
- Pore over dusty tomes to find the information they need
- Books are incomprehensible to others
- Full of weird symbols and obscure incantations

Cryptologists

Modern Wizards

- Start off very weak
- Require many years to develop their powers
- Pore over dusty tomes to find the information they need
- Books are incomprehensible to others
- Full of weird symbols and obscure incantations

System Crackers
Security Experts
Cryptologists

Cryptologists

Modern Wizards

 АЮГОї Т	

- Start off very weak
- Require many years to develop their powers
- Pore over dusty tomes to find the information they need
- Books are incomprehensible to others
- Full of weird symbols and obscure incantations

Web Sites
Hackers
System Crackers Security Experts
Cryptologists

A Powerful Wizard

- Gandalf the White
- Most powerful wizard in Gondor

Coincidence? I think not.

- Gandalf the White
- Most powerful wizard in Gondor

- Whitfield Diffie
- Chief Security Officer at Sun Microsystems

Computer Security

Have You Ever Wished?

- ...you could walk through walls?
- How about firewalls?
- ...you had one of those invisibility cloaks?
- How about remaining undetected on the Internet?
- ...you could tame monsters?
- How about botnets?

Computer Security

Have You Ever Wished?

- ...you could walk through walls?
- How about firewalls?
- ...you had one of those invisibility cloaks?
- How about remaining undetected on the Internet?
- ...you could tame monsters?
- How about botnets?

Have You Ever Wished?

- ...you could walk through walls?
- How about firewalls?
- ...you had one of those invisibility cloaks?
- How about remaining undetected on the Internet?
- ...you could tame monsters?
- How about botnets?

Have You Ever Wished?

- ...you could walk through walls?
- How about firewalls?
- ...you had one of those invisibility cloaks?
- How about remaining undetected on the Internet?
- ...you could tame monsters?
- How about botnets?

Have You Ever Wished?

- ...you could walk through walls?
- How about firewalls?
- ...you had one of those invisibility cloaks?
- How about remaining undetected on the Internet?
- ...you could tame monsters?
- How about botnets?

Have You Ever Wished?

- ...you could walk through walls?
- How about firewalls?
- ...you had one of those invisibility cloaks?
- How about remaining undetected on the Internet?
- ...you could tame monsters?
- How about botnets?

Crypto Intro

- Play clip 4 "A Brief History of Cryptography" (6:11)
- Covers what cryptography is

What All the Words Mean

cryptography is encrypting your information so that other people can't read it
cryptanalysis is trying to read other people's encrypted messages cryptology is the study of both

Roman Times

The Skytale

Travis H.
Math Rules Cyberspace

What All the Words Mean
Encryption Machines

Jefferson Cylinder - 1790

WWII - Enigma

Korean War

Late 20th Century

Russian Fialka Machine

Modern Encryption Machines

Almost Everything on the Internet

- If you see these icons, your computer is doing encryption

Caesar Cipher

Replace input (B) with letter three to the right (E)
The number three is called the key to the cipher
Wraps around
To decrypt we do the reverse
ANT becomes DQW

Caesar Cipher Example

substitution table

$$
\begin{array}{c|c}
\hline \text { plaintext } & \text { ABCDEFGHIJKLMNOPQRSTUVWXYZ } \\
\hline \hline \text { ciphertext } & \text { DEFGHIJKLMNOPQRSTUVWXYZABC } \\
\hline
\end{array}
$$

example

plaintext	THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
ciphertext	WKH TXLFN EURZQ IRA MXPSV RYHU WKH ODCB GRJ

Hand-On Caesar Cipher

- Write message, encrypt using handout (Vigenère square)
- Plaintext letter is row, move over to the D column; write out letter there
- Swap with your neighbor
- Look up his ciphertext in D column; write out letter at beginning of row

example

plaintext	THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
ciphertext	WKH TXLFN EURZQ IRA MXPSV RYHU WKH ODCB GRJ

Changing Symbols

- We use 26 symbols (A-Z); this is called our alphabet.
- It's irrelevant to cryptographers.
- For example, we could change to numbers:

A	B	C	D	E	F	G	H	I	J	K	L	M
00	01	02	03	04	05	06	07	08	09	10	11	12
N	O	P	Q	R	S	T	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

- These are called ordinal numbers.

Encrypting Using Numbers

- (1) Replace A with $0, B$ with $1, C$ with $2, \ldots Z$ with 25
(2) Add the key (3) to each number
(3) Replace 0 with $A, 1$ with $B, 2$ with $C, \ldots 25$ with Z
- But wait, what if we went over 25 ?
- In that case we subtract 26 from the result
- So 24 plus 3 is 27 , but that's too high, so $27-26=1$
- This is called modular addition.
- For decryption, we subtract the key k
- If we go under zero, then we add 26

Encrypting Using Numbers

- (1) Replace A with $0, B$ with $1, C$ with $2, \ldots Z$ with 25
(2) Add the key (3) to each number
(3) Replace 0 with $A, 1$ with $B, 2$ with $C, \ldots 25$ with Z
- But wait, what if we went over 25 ?
- In that case we subtract 26 from the result
- So 24 plus 3 is 27 , but that's too high, so $27-26=1$
- This is called modular addition.
- For decryption, we subtract the key k
- If we go under zero, then we add 26

Encrypting Using Numbers

- (1) Replace A with $0, B$ with $1, C$ with $2, \ldots Z$ with 25
(2) Add the key (3) to each number
(3) Replace 0 with $A, 1$ with $B, 2$ with $C, \ldots 25$ with Z
- But wait, what if we went over 25 ?
- In that case we subtract 26 from the result
- So 24 plus 3 is 27 , but that's too high, so $27-26=1$
- This is called modular addition.
- For decryption, we subtract the key k
- If we go under zero, then we add 26

How Is This Math?

If x is the plaintext and y is the ciphertext, the equation we're using is:

$$
y=(x+3) \bmod 26
$$

Or more generally, for a key k and an alphabet of n symbols:

$$
y=(x+k) \bmod n
$$

Decryption is similar:

$$
x=(y-k) \bmod n
$$

Shift Ciphers

- The amount we shift is the key
- In Caesar's cipher, the key was 3
- Q: Why do you suppose he chose 3 ?
- Q: How many keys are there?
- Cryptographers call all of these "Caesar ciphers"

Shift Ciphers

- The amount we shift is the key
- In Caesar's cipher, the key was 3
- Q: Why do you suppose he chose 3 ?
- Q: How many keys are there?
- Cryptographers call all of these "Caesar ciphers"

Shift Ciphers

- The amount we shift is the key
- In Caesar's cipher, the key was 3
- Q: Why do you suppose he chose 3 ?
- Q: How many keys are there?
- Cryptographers call all of these "Caesar ciphers"

About the Vigenère Square

- Q: Now that you know the math, what is the Vigenère square doing?
- Q: What do you notice about the square?
- Q: How else could you do the same thing with this square?
- Q: What other tools could help you do the same thing?

Computer Security

Explanation Caesar Cipher Example
How Is This Math?
Cryptanalysis of Shift Cipher Improving the Cipher

Other Shift-Cipher Tools

- Were still used in the US Civil War

Cryptanalysis of Shift Cipher

encrypted message

Nwcz akwzm ivl amdmv gmiza iow wcz nibpmza jzwcopb nwzbp wv bpqa kwvbqvmvb, i vme vibqwv, kwvkmqdml qv tqjmzbg, ivl Imlqkibml bw bpm xzwxwaqbqwv bpib itt umv izm kzmibml mycit.

- Q: How can we read such a message without knowing the key?

Trivial Cryptanalysis

encrypted message

Nwcz akwzm ivl amdmv gmiza iow wcz nibpmza jzwcopb nwzbp wv bpqa kwvbqvmvb, i vme vibqwv, kwvkmqdml qv tqjmzbg, ivl lmlqkibml bw bpm xzwxwaqbqwv bpib itt umv izm kzmibml mycit.

- If we know the input is English, there's only a few one-letter words.
- Since the rest of the input is gibberish, and it's not capitalized, " i " must be ciphertext for a.

Classical Countermeasures

- Use all one case (lower or upper)
- Remove punctuation and spaces
- You'll sometimes see them in five-letter groups; that's easier to read and was normal for telegraphs
- But I'm lazy and didn't do that in this talk
- Q: Why doesn't modern cryptography do this?

Brute Force Attack

encrypted message

nwczakwzmivlamdmvgmizaiowwcznibpmzajzwcopbnwzbpwv bpqakwvbqvmvbivmevibqwvkwvkmqdmlqvtqjmzbgivllm|qki bmlbwbpmxzwxwaqbqwvbpibittumvizmkzmibmlmycit

- Brute force attack tries all 26 possible keys ($k=0$... 25)
- One of them will yield a readable message
- Rest will still look encrypted
- Q: How can you use your handout to do this?

Bruce Force Hands-On

encrypted message

exxegoexsrgi

- Take the day of the month you were born on
- Count over that many columns (use column B if you were born on first of month, etc.)
- Look up this text in that column, write it out

Frequency Analysis

- We know that e is the most common letter in English
- Count which is the most common letter in the message
- That's probably the letter e in the original

Frequency Analysis Example

- There's 18 occurences of the letter m

encrypted message

nwczakwzmivlamdmvgmizaiowwcznibpmzajzwcopbnwzbpwv bpqakwvbqvmvbivmevibqwvkwvkmqdmlqvtqjmzbgivllmlqki bmlbw bpmxzwxwaqbqwvbpibittumvizmkzmibmlmycit

Let $y=\operatorname{ord}(m)=12, x=\operatorname{ord}(e)=4$, and remember:

$$
\begin{gathered}
x=(y-k) \bmod n \\
4=(12-k) \\
k=(12-4)=8
\end{gathered}
$$

Frequency Analysis Solution

encrypted message

nwczakwzmivlamdmvgmizaiowwcznibpmzajzwcopbnwzbpwv bpqakwvbqvmvbivmevibqwvkwvkmqdmlqvTqjmzbgivllmlqki bmlbwbpmxzwxwaqbqwvbpibittumvizmkzmibmlmycit

decrypted message (spaces and punctuation added)

Four score and seven years ago our fathers brought forth on this continent, a new nation, conceived in Liberty, and dedicated to the proposition that all men are created equal.

Computer Security

Explanation Caesar Cipher Example How Is This Math? Cryptanalysis of Shift Cipher Improving the Cipher

How Do We Improve the Cipher?

- How do we improve this cipher?
- First, we need to identify the problems.
- Q: What was the problem making brute force possible?
- Q: What was the problem making frequency analysis possible?

Explanation

How Do We Improve the Cipher?

- How do we improve this cipher?
- First, we need to identify the problems.
- Q: What was the problem making brute force possible?
- Q: What was the problem making frequency analysis possible?

How Do We Improve the Cipher?

- How do we improve this cipher?
- First, we need to identify the problems.
- Q: What was the problem making brute force possible?
- Q: What was the problem making frequency analysis possible?

How Do We Improve the Cipher?

- How do we improve this cipher?
- First, we need to identify the problems.
- Q: What was the problem making brute force possible?
- Q: What was the problem making frequency analysis possible?

Shift Cipher Review

substitution table

plaintext	ABCDEFGHIJKLMNOPQRSTUVWXYZ
ciphertext	DEFGHIJKLMNOPQRSTUVWXYZABC

- Note that the ciphertext alphabet is just the plaintext alphabet slid over
- All we need is one input and one output to figure out the key (the amount of the rotation)
- Q: Does multiple encryption fix the problem?

Function Composition

$$
\begin{gathered}
f(x)=x+3(\bmod 26) \\
g(x)=x+4(\bmod 26) \\
h(x) \equiv g(f(x)) \\
h \equiv g \circ f
\end{gathered}
$$

Function Composition

$$
\begin{gathered}
f(x)=x+3(\bmod 26) \\
g(x)=x+4(\bmod 26) \\
h(x) \equiv g(f(x)) \\
h \equiv g \circ f \\
h(x)=(x+3)+4(\bmod 26)
\end{gathered}
$$

- Q: What if f had a key of 17 , and g had a key of 14 - what would the key of h be?

Substitution Cipher

- A substitution cipher maps from one alphabet to another
- Can map from and to same alphabet, but scrambled

substitution table

plaintext	ABCDEFGHIJKLMNOPQRSTUVWXYZ
ciphertext	THEQUICKBROWNFXJMPDVRLAZYG

Memorizing Substitution Ciphers

- Need all 26 ciphertext letters in the right order to encrypt or decrypt.
- Various tricks to remember them, such as using a phrase, eliminating any repetitions, and finishing up alphabet.

substitution table

plaintext	ABCDEFGHI JKLMNOPQRSTUVWXYZ
ciphertext	THEQUICKBROWNFXJMPDVRLAZYG

Partial Function

- With a partial function,
- some plaintext letters (elements of domain X) don't have known ciphertext letters (elements of co-domain Y)
- This isn't usually the case, and isn't the case here.

Total Function

- In our case, every input symbol has an output symbol
- This is called a total function, or usually just a function

Injection

- Every input (in X) has at most one output (in Y)
- This makes it an injective function, or one-to-one

Surjection

- Every output (in Y) has at least one input (in X)
- This makes it a surjective function, or onto

Bijection

- A function that is both is known as bijective, or one-to-one correspondence
- This means that every output has exactly one input

Permutation

- A total bijective function whose outputs (codomain) are from the same set as its inputs (domain) is a permutation
- Basically, a permutation is just a scrambling of the elements

In Other Words

classical cryptographer	computer scientist	mathematician
plaintext	input	domain
ciphertext	output	codomain
letter	symbol	element
alphabet	alphabet	set

Does This Solve Our Problem?

- Caesar cipher had only 26 possible keys
- Q: How many does a substitution cipher have?

How Many Ways to Scramble 26 Letters?

- First letter may map to any of the 26 letters
- Second letter may map to 25 remaining letters
- Third letter may map to any of 24 remaining
- Do you see a pattern?

Math Basis

Does This Solve Our Problem?
Cryptanalysis
Transposition, Polyalphabetic

It's a Factorial!

$26 \star(25 \star(24 \ldots))=26!$

$26!=403291461126605635584000000$

You've now discovered how to find out how many permutations are possible for a set.
For n elements, it's n factorial! This is far too many to try them all (brute force)

It's a Factorial!

$$
26 \star(25 \star(24 \ldots))=26!
$$

$26!=403291461126605635584000000$
You've now discovered how to find out how many permutations are possible for a set.
For n elements, it's n factorial!
This is far too many to try them all (brute force)

Sample Substitution

encrypted message

LIVITCSWPIYVEWHEVSRIQMXLEYVEOIEWHRXEXIPFEMVEWHKVSTYLXZIXLIKIIXPIJVSZEYPER RGERIMWQLMGLMXQERIWGPSR IHMXQEREKIETXMJTPRGEVEKEITREWHEXXLEXXMZITWAWSQWXSW EXTVEPMRXRSJGSTVRIEYVIEXCVMUIMWERGMIWXMJMGCSMWXSJOMIQXLIVIQIVIXQSVSTWHKPE GARCSXRWIEVSWIIBXVIZMXFSJXLIKEGAEWHEPSWYSWIWIEVXLISXLIVXLIRGEPIRQIVIIBGII HMWYPFLEVHEWHYPSRRFQMXLEPPXLIECCIEVEWGISJKTVWMRLIHYSPHXLIQIMYLXSJXLIMWRIG XQEROIVFVIZEVAEKPIEWHXEAMWYEPPXLMWYRMWXSGSWRMHIVEXMSWMGSTPHLEVHPFKPEZINTC MXIVJSVLMRSCMWMSWVIRCIGXMWYMX

- So how would you cryptanalyze this?
- Taking the spaces out is a common trick and usually doesn't hurt readability of plaintext

English Letter Frequency Distribution

English Bigram Distribution

- bigrams are pairs of letters
- most common is "th", followed by "he", and others

English Trigram Distribution

- trigrams are three letters in a row
- most common is "the", followed by "and", "tha", etc.

Attacking It 1

encrypted message

LIVITCSWPIYVEWHEVSRIQMXLEYVEOIEWHRXEXIPFEMVEWHKVSTYLXZIXLIKIIXPIJVSZEYPER RGERIMWQLMGLMXQERIWGPSRIHMXQEREKIETXMJTPRGEVEKEITREWHEXXLEXXMZITWAWSQWXSW EXTVEPMRXRSJGSTVRIEYVIEXCVMUIMWERGMIWXMJMGCSMWXSJOMIQXLIVIQIVIXQSVSTWHKPE GARCSXRWIEVSWIIBXVIZMXFSJXLIKEGAEWHEPSWYSWIWIEVXLISXLIVXLIRGEPIRQIVIIBGII HMWYPFLEVHEWHYPSRRFQMXLEPPXLIECCIEVEWGISJKTVWMRLIHYSPHXLIQIMYLXSJXLIMWRIG XQEROIVFVIZEVAEKPIEWHXEAMWYEPPXLMWYRMWXSGSWRMHIVEXMSWMGSTPHLEVHPFKPEZINTC MXIVJSVLMRSCMWMSWVIRCIGXMWYMX

- I was most common letter, XL most common bigram, XLI most common trigram
- Guessed that XLI=the

Attacking It 2

encrypted message

heVeTCSWPeYVaWHaVSReQMthaYVa0eaWHRtatePFaMVaWHKVSTYhtZetheKeetPeJVSZaYPaR RGaReMWQhMGhMtQaReWGPSReHMtQaRaKeaTtMJTPRGaVaKaeTRaWHatthattMZeTWAWSQWtSW atTVaPMRtRSJGSTVReaYVeatCVMUeMWaRGMeWtMJMGCSMWtSJOMeQtheVeQeVetQSVSTWHKPa GARCStRWeaVSWeeBtVeZMtFSJtheKaGAaWHaPSWYSWeWeaVtheStheVtheRGaPeRQeVeeBGee HMWYPFhaVHaWHYPSRRFQMthaPPtheaCCeaVaWGeSJKTVWMRheHYSPHtheQeMYhtSJtheMWReG tQaROeVFVeZaVAaKPeaWHtaAMWYaPPthMWYRMWtSGSWRMHeVatMSWMGSTPHhaVHPFKPaZeNTC MteVJSVhMRSCMWMSWVeRCeGtMWYMt

- heVe $=$ here, Rtate $=$ state, atthattMZe $=$ atthattime
- means $V=r, R=s, M=i, Z=m$

Math Basis

Does This Solve Our Problem?

Attacking It 3

encrypted message

hereTCSWPeYraWHarSseQithaYra0eaWHstatePFairaWHKrSTYhtmetheKeetPeJrSmaYPas sGaseiWQhiGhitQaseWGPSseHitQasaKeaTtiJTPsGaraKaeTsaWHatthattimeTWAWSQWtSW atTraPistsSJGSTrseaYreatCriUeiWasGieWtiJiGCSiWtSJOieQthereQeretQSrSTWHKPa GAsCStsWearSWeeBtremitFSJtheKaGAaWHaPSWYSWeWeartheStherthesGaPesQereeBGee HiWYPFharHaWHYPSssFQithaPPtheaCCearaWGeSJKTrWisheHYSPHtheQeiYhtSJtheiWseG tQasOerFremarAaKPeaWHtaAiWYaPPthiWYsiWtSGSWsiHeratiSWiGSTPHharHPFKPameNTC iterJSrhisSCiWiSWresCeGtiWYit

- remarA $=$ remark, and so on...

Math Basis

Does This Solve Our Problem?

Done

decrypted message

hereuponlegrandarosewithagraveandstatelyairandbroughtmethebeetlefromaglas scaseinwhichitwasencloseditwasabeautifulscarabaeusandatthattimeunknownton aturalistsofcourseagreatprizeinascientificpointofviewthereweretworoundbla ckspotsnearoneextremityofthebackandalongoneneartheotherthescaleswereexcee dinglyhardandglossywithalltheappearanceofburnishedgoldtheweightoftheinsec twasveryremarkableandtakingallthingsintoconsiderationicouldhardlyblamejup iterforhisopinionrespectingit

- Add spaces between words, and...

Math Basis

Adding Spaces

decrypted message

Hereupon Legrand arose, with a grave and stately air, and brought me the beetle from a glass case in which it was enclosed. It was a beautiful scarabaeus, and, at that time, unknown to naturalists-of course a great prize in a scientific point of view. There were two round black spots near one extremity of the back, and a long one near the other. The scales were exceedingly hard and glossy, with all the appearance of burnished gold. The weight of the insect was very remarkable, and, taking all things into consideration, I could hardly blame Jupiter for his opinion respecting it.

- Abracadbra, we're done.
- How do we solve this? Well...

Cryptography 101

- Play clip 5, video which talks about transposition ciphers (9:59)

Polyalphabetic Substitution Ciphers

- Play clip 6 (20:28), skip to 15:34 for Vigenère cipher (4:56 net)
- Covers polyalphabetic substitution ciphers

Polyalphabetic Cipher Hands-On

plaintext	ATTACKATDAWN
key	LEMONLEMONLE

You should get LXFOPVEFRNHR

Polyalphabetic Cipher Hands-On

plaintext	ATTACKATDAWN
key	LEMONLEMONLE

You should get LXFOPVEFRNHR

Breaking Substitution Ciphers

- Breaking these is an advanced topic
- It's called Kasiski Examination
- But you have half the knowledge already
- Q: Would multiple encryption help?

Functional Composition

- If the $f(x)$ mapped A to G, and B to X
- And $g(x)$ mapped G to Y, and X to C
- You could just have $h(x)$ map A to Y and B to C

The Manhattan Project Cipher

- Pick out an 11×11 grid on your graph paper
- Number them $0 . .9$ along X and Y axes; this gives you a 10×10 grid (this is 100 squares)
- Fill all 100 squares with this many of each letter (eight As, one B, etc.):
- A 8, B 1, C 3, D 4, E 13, F 2, G 2, H 6, I 7, J 1, K 1, L 4, M 2, N 6, O 7, P 2, Q 1, R 6, S 6, T 9, U 2, V 1, W 2, X 1, Y 2, Z 1
- Encrypt by picking a letter at random, then writing down the X, Y coordinates (commas are not necessary)

Steganography

- Play clip S to explain steganography (2:30)
- Steganography is not cryptography, but similar in some ways

Playfair

- Play clip P which rapidly covers playfair cipher (3:00)

One-Time Pad (OTP)

- Play OTP video 1 explaining OTPs (2:42)
- Play OTP video 2 recording of a numbers station (1:56)
- Q: Notice anything about the groupings of numbers?

Enigma

- Play clip E1 "The Enigma Machine" (3:39)
- Talk about how rotors act as substitution ciphers
- Play clip E2 video "My Enigma" (3:44)

Manhattan Project Cipher
Steganography (opt)

Playfair (opt)
One-Time Pad (opt)
Enigma (opt)

Rotor Assembly

Wiring Diagram

- Red shows electrical current
- Battery (1) to key A (2) to plugboard (3) to fixed entry wheel (4) through rotors (5), to reflector (6)
- back through rotors (5 and 4), to plug S (7) through cable to D (8) and lighting up light D (9)

```
Steganography (opt)
Playfair (opt)
One-Time Pad (opt)
Enigma (opt)
```


But That's Not All

- With each keypress, the wheels rotated
- rotors 1-2-3 advance like seconds-minutes-hours on a clock

This Is Math Too

$$
E=P R M L U L^{-1} M^{-1} R^{-1} P^{-1}
$$

- Where E is encryption function, P is plugboard, $R / M / L$ right/middle/left rotors, U is reflector

$$
E=P\left(r^{i} R r^{-i}\right)\left(r^{j} M r^{-j}\right)\left(r^{k} L r^{-k}\right) U\left(r^{k} L^{-1} r^{-k}\right)\left(r^{j} M^{-1} r^{-j}\right)\left(r^{i} R^{-1} r^{-i}\right) P^{-1}
$$

- r is the cyclic permutation operator
- Don't feel bad if you don't understand this

Further Reading

- Keep your handout, it has a link to the extra material and my email address
- Take 5 minutes to fill out your survey
- If this is your last class, please give me your survey packets to turn in

