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Background Goals

Why Study Failure?

Where Crypto Is Needed in Web 2.0 Apps
Authent rs

Dramatic Foresha

Encrypting To Yourself

Where to Start

@ Always start an analysis with what you're trying to accomplish
@ What are our requirements or goals?
@ Then do threat modelling
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Encrypting To Yourself

What Are Our Goals Generally?

@ Online newspaper cares about

@ authentication (receiving compensation for content)
@ confidentiality (no content without authentication)

@ Online bank cares about

authentication (only you may access your information)
authorization (only you may perform transactions)
confidentiality (no financial disclosures)

integrity (no fiddling with account balances)

¢ © e ¢

@ Everyone should care about customer privacy!
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Goals

Why Study Failure?

Where Crypto Is Needed in Web 2.0 Apps
Authenticators

Dramatic Foreshadowing

Encrypting To Yourself

Background

Why Study Failure?

“Few false ideas have more firmly gripped the minds of so many
intelligent men than the one that, if they just tried, they could
invent a cipher that no one could break.”

— David Kahn

“Those who cannot learn from history are doomed to repeat it.”
— George Santayana

@ In crypto, nobody really knows how to make unbreakable
algorithms, so we learn how to make things that aren’t
breakable by any known technique, and hope for the best.
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Goals
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Dramatic Foreshadowing

Encrypting To Yourself

Where Crypto Is Needed in Web 2.0 Apps

e © ¢ ¢ ¢

Hidden Fields
GET parameters
POST parameters

Cookies (especially authenticators, see next slide)

Anything that gets sent to clients and is intended to be

returned unaltered
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Why Study Failure?

Where Crypto Is Needed in Web 2.0 Apps
Authenticators

Dramatic Foreshadowing

Encrypting To Yourself

Authenticators

@ Indicate that the user has gone through login
process Plaintext

@ Implies or includes the login name, or needs R
identification cookie too

Block Ciqher

@ Can’t be stored plaintext, so typically Key —=| Encryption
encrypted: C = Ex(P) '

o C is ciphertext (stored in cookie), K is key, P Ciphertext

is plaintext (identifier)

@ Let’s discuss non-crypto problems first.
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Dramatic Foreshadowing

Encrypting To Yourself

Authentication Replay Attack

@ Adversary steals the cookie using malware or sniffing or quick
physical access to computer

@ Adversary replays cookie at own time and choosing
@ So now we need to either

o tie them to a computer (IP)
o include a timestamp and don't accept expired cookies

@ Not going to discuss this attack any more
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Authenticators
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Encrypting To Yourself

Other Non-Crypto Attacks

@ Cross-Site Request Forgery (CSRF)
@ Cross Site Scripting (XSS) and cookie theft
o Let's get to cryptographic threat modelling
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Background Goals

Why Study Failure?

Where Crypto Is Needed in Web 2.0 Apps
Authenticators

Dramatic Foreshadowing

Encrypting To Yourself

Dramatic Foreshadowing

@ Most sites encrypt their authenticators
@ This is actually using the wrong tool for the job
@ You'll understand why by the end of this talk
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Goals

Why Study Failure?
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Dramatic Foreshadowing
Encrypting To Yourself

in Web 2.0 Apps

Normal Encryption

sender

recipient

@ Sender sends message through Internet to recipient
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Background

Goals

Why Study Failure?

Where Crypto Is Needed in Web 2.0 Apps
Authenticators

Dramat oreshadowing

Encrypting To Yourself

Your Problem

Website

<€

@ You are sending data to yourself through the browser
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Threat Modelling
The Interrogative Adversary

Eavesdropping Adversary
Active Adversary

Threat Modelling

Men of sense often learn from their enemies. It is from their foes,
not their friends, that cities learn the lesson of building high walls

and ships of war. ..
— Aristophanes
We'll define three classes of cryptographic adversaries:

@ Interrogative Adversary
@ Eavesdropping Adversary

@ Active Adversary
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Threat Modelling

The Interrogative Adversary
Eavesdropping Adversary
Active Adversary

Interrogative Adversary Can...

@ Access your web server
over time

@ Pick usernames or make
guesses

@ Ask your server to mint or
verify authenticators

@ Adjust what he asks based
on what he learns
(adaptive attack)
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Threat Modelling

The Interrogative Adversary
Eavesdropping Adversary
Active Adversary

Interrogative Adversary Can't...

@ Collect other people’s
cookies

@ Spy on their traffic

@ Manipulate other people’s
credentials

@ Do anything beyond using
his computer and your
web site
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Threat Modelling
The Interrogative Adversary
Eavesdropping Adversary
Active Adversary

Eavesdropping Adversary

Same powers as Interrogative Adversary, plus

Can see all traffic between users and the server

Think of wifi networks or dsniff

Cannot modify any packets flowing across the network
Additional powers usually defeated by using SSL
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Threat Modelling
The Interrogative Adversary
Eavesdropping Adversary
Active Adversary

Active Adversary

]
]
]
]
*]
*]

Same powers as Eavesdropping Adversary, plus
Can mount man-in-the-middle attacks

Can modify data in transit

Think of controlling a web proxy (tor)

Most powerful adversary, but

Additional powers usually defeated using SSL
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Web Security Failures Fatbrain Flaw
Unix crypt(3)
WSJ.com Flaws

Fatbrain Flaw

@ SSL-secured, but that didn’t help
@ Authenticator was unencrypted <username, sessionlD> tuple

@ Session ID was global
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Web Security Failures Fatbrain Flaw
Unix crypt(3)
WSJ.com Flaws

Fatbrain Attack

@ Interrogative adversary gets one account, knows all SIDs are
less than that

@ Can guess which SID a given user might have based on how
long user was on site

o Can iterate through all SIDs for a given ID since there were
not many users

@ By “many” | mean in a cryptographic sense, i.e. 2%4
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Fatbrain Fail

Fatbrain Flaw
Unix crypt(3)
WSJ.com Flaws

Web Security Failures

@ “You're doing
it wrong”

@ Truly basic
flaw

o Just using
SSL is not
enough
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Web Security Failures Fatbrain Flaw
Unix crypt(3)
WSJ.com Flaws

About Unix crypt(3)

@ Library function used for hashing system passwords; not an
encryption routine!

@ Is really close to DES encryption of a plaintext of all-zeroes
using the input as the key

@ This is reversed from the way encryption routines work

@ Depends on being unable to determine the key given the
ciphertext
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Web Security Failures Fatbrain Flaw
Unix crypt(3)
WSJ.com Flaws

Crypting with Salt

@ 12 bits of “salt” used to perturb the encryption algorithm, so
off-the-shelf DES hardware implementations can't be used to
brute-force it faster

@ Salt should be random, else identical passwords hash to
identical values

@ Salt and the final ciphertext are encoded into a printable string
in a form of base64
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Web Security Failures Fatbrain Flaw
Unix crypt(3)
WSJ.com Flaws

How Unix crypt(3) Works

o
2]
o
o
o
o

User's password truncated to 8 characters, and those are
coerced down to only 7 bits ea.

This forms 56-bit DES key

Salt is used to make part of the encryption routine different
That key is then used to encrypt an all-bits-zero block:
crypt(s,x) = s+ Ex(0)

Iterate 24 more times, each time encrypting the results from
the last round

By repeating, this makes it slower, on purpose
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Web Security Failures Fatbrain Flaw
Unix crypt(3)
WSJ.com Flaws

WSJ.com Flaw #1

WSJ Authenticator
@ let + be concatenation

@ Unix crypt (salt, username + secret string)
@ = salt + encrypted data
°

= WSJ.com authenticator

Anyone who is familiar with crypt(3) should know the problem with
this. What is it?
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Web Security Failures Fatbrain Flaw
Unix crypt(3)
WSJ.com Flaws

WSJ.com Flaw #1 Hint

WSJ Authenticator

@ authenticator = Unix crypt (salt, username + secret string)

@ Hint: Where is the secret string located
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Web Security Failures Fatbrain Flaw
Unix crypt(3)
WSJ.com Flaws

WSJ.com Long Name Instant Fail

*]
*]
*]
]
*]
]

Unix crypt(3) only hashes 8 octets, so truncates input string
crypt(s,” dandylionSECRETWORD" ) = crypt(s,” dandylio™)
Pick an 8 character username

Pick a salt

Do the crypt yourself

Presto: you have a valid authenticator for that username w/o
knowing secret string
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Web Security Failures Fatbrain Flaw
Unix crypt(3)
WSJ.com Flaws

WSJ Failure #1

o crypt(3) is
not a
encryption
routine

@ wrong tool
for the job
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Web Security Failures Fatbrain Flaw
Unix crypt(3)
WSJ.com Flaws

WSJ.com Salt Failure

@ Usernames identical in the first 8 letters had identical
authenticators

@ Thus interrogative adversary can observe salt was fixed
constant in the program

@ Means that | can use one authenticator with another user’s
login

@ Assuming both usernames start with same 8 characters
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Web Security Failures Fatbrain Flaw
Unix crypt(3)
WSJ.com Flaws

WSJ.com Failure #2

@ No two
authenticators
should be the same

o LOLWTFRU
DOING?
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Web Security Failures Fatbrain Flaw
Unix crypt(3)
WSJ.com Flaws

WSJ.com Flaw #3

WSJ Authenticator

crypt (salt, username + secret string)
@ = salt + encrypted data

@ = the WSJ.com authenticator

There's another problem here, can you see what it is?
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Web Security Failures Fatbrain Flaw
Unix crypt(3)
WSJ.com Flaws

WSJ.com Flaw #3 Hint

WSJ Authenticator

@ crypt (salt, username + secret string)

Hint: It allows you to recover the secret string relatively easily.
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Web Security Failures Fatbrain Flaw
Unix crypt(3)
WSJ.com Flaws

Adaptive Chosen Message Attack

WSJ Authenticator
@ crypt (salt, username + secret string)

©0060 OO0

Register username “failfai”

compute crypt(s, “failfaiA”) and see if that’s a valid
authenticator for user failfai

If not, pick a different letter and try step 2 again.
If it is, you know first letter of secret string.
Reduce username length by one, register it and jump to step 2

When this stops working you've gotten all of the key
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Web Security Failures Fatbrain Flaw
Unix crypt(3)
WSJ.com Flaws

WSJ Flaw #3

@ By adaptive chosen message attack, can be broken in 128x8
iterations instead of 1288

@ Each query took 1 second
@ Secret string was “March20”
Time is O(n) instead of O(c")
@ ACMA gives full key recovery in 17 minutes

o ...Instead of 2x10%years
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Web Security Failures Fatbrain Flaw
Unix crypt(3)
WSJ.com Flaws

WSJ Epic Fail

@ 17 minutes to
recover
“secret”

ancient

analytic
technique
going back to
TENEX

systems
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Random Number Generation
Hashes
Bad Crypto Generally ECB mode
Chained Block Cipher Modes
Encrypting When You Need Integrity Protection

Poor Random Number Generation

The best crypto can’t save you from a broken RNG
Netscape SSL flaw (1995)

MS CryptGenRandom (Nov 2007)

Dual EC_DRBG (Aug 2007)

Debian OpenSSL (May 2008)
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Random Number Generation
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Encrypting When You Need Integrity Protection

Good Random Number Generation

@ /dev/urandom on most Unix systems

@ CryptGenRandom or RtlGenRandom from ADVAPI32.DLL on
Windoze

Travis H. Web 2.0 Cryptology



Random Number Generation
Hashes
Bad Crypto Generally ECB mode
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Encrypting When You Need Integrity Protection

Hashes Generally

@ Cryptographic hashes are one way functions
@ Given input, it's easy to compute output

@ Given the output, it's difficult to compute input
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Hash Examples

Input Digest
B crypt;’:;:ph'c DFCD 3454 BBEA 788A 751A
. 696C 24D9 7009 CA99 2D17
function
ihelieciioy CRAEIEEAE 0086 46BB FR7D CBE2 823C
MECECTET | BB ACC7 6CD1 90B1 EEGE 3ABC
the blue dog function
3 [E2itens CRTEECEAE 8FD8 7558 7851 4F32 D1C6
Jumps ouer - ——m BB 76B1 79A9 ODA4 AEFE 4819
the blue dog function
H:: r::ef:’,): cryptr::gr:phlc FCD3 7FDB 5AF2 C6FF 915F
Jump: as! D401 COA9 7D9A 46AF FBAS
the blue dog function
lnelieciiox Cyprooiaehig 8ACA D682 D588 4C75 4BF4
Jumps oer WEELD 1799 7D88 BCF8 92B9 6A6C
the blue dog function
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Encrypting When You Need Integrity Protection

Hashing With No Salt

@ Allow user to pick secret s - easy to guess
@ Don't want to store user secrets in plaintext form
@ Pass through a (crypto) hash instead, store digest

@ Any guesses what is wrong with this?
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Random Number Generation
Hashes
Bad Crypto Generally ECB mode
Chained Block Cipher Modes
Encrypti Nhen You Need Integrity Protection

Hashing With No Salt Flaw

@ Simply hash all likely secrets

@ Already done in rainbow tables you can download
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Rainbow Tables

= vouns = oatel

e i

et B b T T b T e T s T il
i passwd E|=>:.‘dlcm431|;,'“>; culturs El:b:\re&xesj:b; crypto :'@:.‘Hikn j@i linux23 E

o Essentially a clever way to store precomputed hashes
@ Easy to download for most hashes over alphanumerics

@ Can easily look up any unsalted precomputed hash
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Hashing With Salt

)

Whenever you're hashing weak (easy to guess) secrets

Always prepend a unique, random byte series to the secret and
the hash output

salthash(s,i) = s+ hash(s + 1)

| recommend using as many bits of salt as your hash has
output

This guarantees rainbow tables would have to hash every
input, not just likely inputs
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Password Hashing Alternatives

@ Use HMAC (described later) instead of simple hash, with salt
as the key

@ Better yet, use PBKDF2 for passwords. This iterates 1000
times (recommended minimum) on each password, making
cracking passwords much more time consuming.
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Bad Crypto Generally

What Is ECB Mode?

Random Number Generation

Hashes

ECB mode

Chained Block Cipher Modes

Encrypting When You Need Integrity Protection

Plaintext Plaintext
r I T
v v
Block Cipher Block Cipher
Key —= Encryption Key —=| Encryption Key
v v
5 I I
Ciphertext Ciphertext

Plaintext

Block Cipher
= Encryption

'
[T [T
Ciphertext

Electronic Codebook (ECB) mode encryption

G = Ex(P;) done independently for each block of plaintext
This is like looking up the plaintext in a codebook and replacing it

with what you find there.

This is the simplest mode but has some problems. What are they?

Travis H.
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ECB Block Swapping

@ Adversary can swap ciphertext blocks around and effectively
swap plaintext blocks around without breaking crypto

o AAAAAAAABBBBBBBB can be changed to
BBBBBBBBAAAAAAAA
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ECB Block Repetition

@ Any plaintext block that repeats later in the stream will show
repetition in the ciphertext

@ The blocks above show a pattern of ABBBAACA

o Fails to destroy macroscopic patterns in the plaintext; any
pattern that is present above the block level remains a pattern
in the ciphertext.
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Using ECB Mode

plaintext hained modes
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ECB FAIL

o Still looks like Tux to me

@ Block-level patterns (or bigger) still visible in encrypted output
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What Is CBC Mode?

Plaintext Plaintext Plaintext
I I I I I I
Initialization Vector (IV)
1 Il - . -
v ' v
Block Cipher Block Cipher Block Cipher
Key =|  Encryption Key —=|  Encryption Key + | Encryption
v ' [
I I L I I I
Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption

@ Most common chained block cipher mode

@ The output of the block cipher function is XORed with the
next plaintext block

o First plaintext block is XORed with an Initialization Vector
(1v)
@ This makes each ciphertext unique
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Bad Crypto Generally

CBC Mode Fixed IV Flaw

Random Number Generation

Hashes

ECB mode

Chained Block Cipher Modes

Encrypting When You Need Integrity Protection

Typically sites use same key for every user

You make mistake of using fixed IV for every entry

This means two of the three inputs are identical, so:

Identical plaintexts encrypt to identical ciphertexts

What if you were encrypting a password database?

Travis H.
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Encrypting When You Need Integrity Protection

Most people who think of crypto think of encryption.

Your session |IDs probably don’t need to be confidential

°
°
@ Your session IDs probably do need to be returned unmodified
@ Your session IDs probably do need to be unforgeable

°

Here's what happens when you use a screwdriver as a hammer!
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OFB Mode Encryption

Initialization Vector (IV)

A A v

Block Cipher Block Cipher Block Cipher

Key —=|  Encryption Key ——=|  Encryption Key —= ' Encryption
Plaintext Plaintext | Plaintext |
TTTTTTT - [TTTTTT - [T IT -
v v v

Ciphertext Ciphertext Ciphertext

QOutput Feedback (OFB) mode encryption

@ Less commonly-used block cipher mode
o (=P 0

o O;=Ek(0i-1)

@ Og=1V
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OFB Mode Decryption

Initialization Vector (IV)
1
v v

T
Block Cipher Block Cipher

Block Cipher
Key = Encryption Key *| Encryption Key =| Encryption
Ciphertext Ciphertext Ciphertext
v A A\
LT [T [TTTTTT]
Plaintext Plaintext Plaintext

Output Feedback (OFB) mode decryption

@ This is the decryption block diagram
@ What happens if you flip a ciphertext bit?
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OFB Modification

Random Number Generation

Hashes

ECB mode

Chained Block Cipher Modes

Encrypting When You Need Integrity Protection

Initialization Vector (IV)
| NI

v v
Block Cipher Block Cipher
Key —=| Encryption Key —=  Encryption
Ciphertext Ciphertext
[TTTTTT -5 CWTTTTT - (1
v Flipped Ciphertext Bit
T mo
Plaintext Plaintext

v

Block Cipher
Key —= ' Encryption

Ciphertext |
v

Tl

Plaintext

Flipped Plaintext Bit
Output Feedback (OFB) mode decryption

@ Can blindly flip ciphertext bits to flip corresponding plaintext

@ No negative side-effects

Travis H.
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OFB Mode Modification Fail

psoife
™e Sm%a.&, ﬂlegmﬂhdf. '“o’gm 2 -—

FAIL
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CFB Mode Encryption

Initialization Vector (IV)

' v v
Block Cipher Block Cipher Block Cipher
Key = Encryption Key *+ | Encryption Key = | Encryption
Plaintext Plaintext
[TTTTT] —¢p T —=p Plaintext |
[TTTTT -
v v A
Ciphertext Ciphertext Ciphertext

Cipher Feedback (CFB) mode encryption

o Let's say you use CFB mode (a stream cipher mode)
o G=E(G1)®P
)] Co =1V
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CFB Mode Decryption

Initialization Vector (IV)
I I

v v v

Block Cipher Block Cipher Block Cipher
Key —+| Encryption | |Key —  Encryption Key —=| Encryption

=111 D -—[IL1 L = [IIIIITT

It Ciphertext I Ciphertext It Ciphertext

I o R . Spoe
Plaintext Plaintext Plaintext

Cipher Feedback (CFB) mode decryption

@ This is the decryption block diagram
@ What happens if you flip a ciphertext bit?
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CFB Modification

Initialization Vector (IV)
e
v ' v
Block Clpher Block Cipher Block Clpher
Key —=| Encryption Key = Encryption Key = Encryption

Flipped Ciphertext Bit

o TT T Eos | E M B =TT I T T
¥ Ciphertext 1 Ciphertext I Ciphertext
TT T M TT EESHEREE B I Y
Plaintext Plaintext Plaintext
Flipped Plaintext Bit Garbled decryption

Cipher Feedback (CFB) mode decryption

@ Interrogative adversary can flip bits in any block at cost of
corrupting next block

@ By then damage could be done

@ Last block can have bits flipped with no consequences!
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CFB Mode Modification Fail
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CBC Mode Encryption

Plaintext Plaintext Plaintext
I I I I I I
Initialization Vector (IV)
1 Il - . -
v ' v
Block Cipher Block Cipher Block Cipher
Key =|  Encryption Key —=|  Encryption Key + | Encryption
v ' [
I I L I I I
Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption

@ CBC is a very resilient block cipher mode
o Ci=Ex(Pi® Ci-1)
] Co =1V
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CBC Mode Decryption

Initialization Vector (IV) Ciphertext Ciphertext Ciphertext
[EEEEEE

v v '

Block Cipher Block Cipher Block Cipher

Key — = Decryption Key —= | Decryption Key — = Decryption
' ' '
I I

Plaintext Plaintext Plaintext

Cipher Block Chaining (CBC) mode decryption

@ What happens if you flip a ciphertext bit?

Travis H.
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CBC Modification

Flipped ciphertext bits

Initialization Vector (V) Ciphertext = Ciphertext Ciphertext
pis 2 = -
v v v
Bleck Cipher Block Cipher Block Cipher
Key —=  Decryption Key —=| Decryption Key ——=| Decryption
v i

T T I A
Plaintext ™ Plaintext

7 Plaintext

Garbled decryption Flipped plaintext bits

Modification attack or transmission error for CBC

@ Interrogative adversary can flip bits in any non-initial plaintext
block at cost of corrupting previous block

@ Can flip arbitrary bits in first block by altering IV with no
corruption
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CBC Mode Modification Fail

° FAIL

SPRY on NEUTER
Your Best
Lriend
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Implications of No Integrity Protection

@ Fiddling with ciphertext usually corrupts at least one block

o If you're lucky, a randomly-corrupted block will yield a
syntactically-invalid plaintext string

“Shallow men believe in luck. Strong men believe in cause and
effect.”
— Ralph Waldo Emerson
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No Integrity Protection Fail

Epic Fail
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Message Authentication Codes
CBC-MAC

One-Way Hash Function MAC
HMAC

No Public-Key Needed

Message Authentication Codes

@ Want a way to verify data haven't been tampered with

@ Hash isn’t enough; could tamper with data and recompute
hash

@ We need something like a “keyed hash”

@ Several attempts made before finding a secure solution
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CBC-MAC

@ Encrypt the message in CBC or CFB mode

@ Hash is last encrypted block, encrypted once more for good
measure

@ CBC form specified in ANSI X9.9, ANSI X9.19, ISO-8731-1,
ISO 9797, etc.

@ Let's review CBC mode
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CBC Mode
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Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption

@ Can anyone guess the problem in using last ciphertext for
MAC?
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CBC-MAC Vulnerability

Recipient must know the key
Recipient can decrypt the MAC with the key

°
°

@ Block ciphers are reversible

@ Therefore, can create preimages with the same MAC value
°

Not really a big deal if you're the sender and recipient
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CBC-MAC Fail

@ Reversible - no
preimage resistance
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Bidirectional MAC

@ First compute CBC-MAC of message
@ Then compute CBC-MAC of blocks in reverse order
@ Broken by C.J. Mitchell in 1990

@ Exact vulnerability is unclear, but appears to suffer from same
problem as CBC-MAC
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One-Way Hash Function MAC

@ Alice and Bob share key K

@ Alice wants to send Bob a MAC for message M
o MAC=H(K+ M)

@ What is wrong with this method?
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[terative Hash Function Construction
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Compression function is one-way, 1V is usually fixed
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One-Way Hash Function MAC

i blockn..
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Assume secret is one block, message is one or more blocks; where is
the flaw?
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One-Way Hash Function MAC Broken

Anyone can tack data onto the end of the message and generate a
new MAC
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One-Way Hash Function MAC

With Merkle-Damgaard Strengthening
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Hashes can be strengthened against length-extension attacks by

encoding the length as padding
See any problems with this?
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One-Way Hash Function MAC Broken

With Merkle-Damgaard Strengthening
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Anyone can still tack data and a new length onto the end of the
message and generate a new MAC
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Questionable One-Way Hash Function MACs

@ Prepend message length - cryptographer B. Preneel is
suspicious

@ Better to put secret key at end of hash: H(M + K) - this
method has B. Preneel suspicious too

o Still better is H(K+ M+ K) or H(Ki + M+ K3) - but Preneel
still finds suspicious
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One-Way Hash Function MAC Falil

Campbells
~ Microwavable Bowels

= FAIL
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@ Many have tried

@ Few win

Whan Yo
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Other One-Way Hash Function MACs

e H(Ky+H(Kx+ M))
o HK+H(K+M))
@ H(K+p+ M+ K) where p pads K to full message block

o Concatenate 64 bits of key with each message block in hash

All of these seem secure but there's no proof
Given the history it's wise to be skeptical
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Aside: Stronger Hashes

Full Merkle-Damgaard Construction

Message| Message Message,
block 1| block 2 block n
Messagd Message Message| Length
block 1| block 2 black n | padding
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If finalization function is one-way, length extension attacks against
the hash are not possible.
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HMACk = h((K @ opad) + h(K & ipad) + m)
opad = 0x5chche...5¢hc
ipad = 0x363636...3636

HMAC,m) |

k

He—/pad

i

Doesn’'t make sense but comes with a proof of correctness.
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HMAC Win
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Deriving Multiple Keys From One

Standard way is to seed a PRNG, but they are the least
well-analyzed crypto primitives.
Here is a way to use HMAC to do it.

making two keys from one

Given secret s, derive two keys (k'and k?) from it
k! = HMAC(s,"1")
k? = HMAC(s,"2")

Given either or both keys will not help you retrieve s or any other k
derived from s

o
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No Public-Key Needed

@ HMAC is like a digital signature, except that the same key
creates and verifies it

@ A block cipher is like a public-key encryption algorithm, except
same key encrypts and decrypts it

@ All parameters sent to web browsers come back to your server,
so you don’t need public-key crypto

@ Except in HTTPS/SSL/TLS of course, but that is all
cookbook stuff now
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Wordpress Cookie Integrity Protection Vulnerability

More Web Security Flaws

Wordpress Cookie Integrity Protection Setup

Wordpress Cookie Construction
@ let | be a seperator character of some kind

@ authenticator = USERNAME + | + EXPIRY _TIME + | +
MAC

o MAC = HMAC-MD5x (USERNAME + EXPIRY _TIME)

USERNAME The username for the authenticated user
EXPIRY TIME When cookie should expire, in seconds since epoch

Any guesses as to the flaw?
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Wordpress Cookie Integrity Protection Vulnerability

o HMAC-MD5(USERNAME + EXPIRY _TIME)

@ HMAC didn't put a delimiter between username and expirytime
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Wordpress Cookie Integrity Protection Vulnerability

More Web Security Flaws

Wordpress Cookie Integrity Protection Attack

@ Ask site to create authenticator for username “adminQ”, then
create forged authenticator:

Forged Authenticator

@ authenticator = “admin” + | + EXPIRY_TIME; + | +
HMAC-MD5(“admin0"+EXPIRY _TIME>)

@ “admin” + EXPIRY _TIME;= “admin0” + EXPIRY _TIME;

@ The HMAC-MD5 block was from the admin0Q account cookie

@ EXPIRY _TIME;jis the same as EXPIRY _TIMEjbut lacks a
leading zero

@ Due to second equality, MAC verifies properly

@ Tricky attack that is solved by using unambiguous formatting
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More Web Security Flaws

Wordpress Fails It!

o Crypto
payloads need
unambiguous
representa-
tions

That's why
we have

ASN.1, but it

FAILURE o e

overkill

Nothing has ever failed quite as hard as you just did.
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Don't Do This

Suggestions

Do This

Don’t use ECB mode

Don't use stream ciphers (such as RC4)
Don’t use MD5 hashes, or even SHA-1
Don't reuse keys for different purposes
Don't use fixed salts or IVs

Don't roll your own cipher

Don't rely on secrecy of a system

Don’t use guessable values as random numbers or PRNG seeds
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Suggestions

o Keep it simple, stupid
@ Understand the cryptographic properties of the tools
@ Assume adversary knows all but the keys

@ Always strive for unambiguity in your plaintexts and ciphertext
blocks
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Specific Suggestions

@ When in doubt, use:

AES256 in CBC mode for encryption

HMAC-SHAB12 for integrity protection

SHA-256 or SHA-512 with salt for hashing

PBKDF?2 for passwords

/dev/urandom or RtlGenRandom/CryptGenRandom for
random numbers

¢ € @ ¢ @
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Appendix For Further Reading

For Further Reading |

[ The Cookie Eaters
http://cookies.lcs.mit.edu/

@ Cryptography for Penetration Testers
http://video.google.com/videoplay?docid=-518702259268237
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