Web App Cryptology
A Study in Failure

Travis H.

OWASP AppSec USA 26 Oct 2012

Travis H. Web App Cryptology

Background Bay Area Hacker's Association

Why Study Failure?

Where Crypto Is Needed in Web Apps
Authent

Talking

Bay Area Hacker’'s Association

@ Meets once a month
@ http://baha.bitrot.info/

Travis H. Web App Cryptology

http://baha.bitrot.info/

Background Bay Area Hacker's Association

Why Study Failure?

Where Crypto Is Needed in Web Apps
Authenticators

Talking To Yourself

Why Study Failure?

“Few false ideas have more firmly gripped the minds of so many
intelligent men than the one that, if they just tried, they could
invent a cipher that no one could break.”

— David Kahn
“Those who cannot learn from history are doomed to repeat it.”

— George Santayana

@ Nobody really knows how to make unbreakable crypto, so learn
how to make things that aren’t breakable by any known
technique, and hope for best

Travis H. Web App Cryptology

Background

Bay Area Hacker's Association

Why Study Failure?

Where Crypto Is Needed in Web Apps
Authenticators

Talking To Yourself

Where Crypto Is Needed in Web Apps

Hidden Fields
GET parameters
POST parameters

Cookies (especially authenticators, see next slide)

e © ¢ ¢ ¢

Anything that gets sent to clients and intended to be returned
unaltered

Travis H. Web App Cryptology

Background Bay Area Hacker's Association

Why Study Failure?

Where Crypto Is Needed in Web Apps
Authenticators

Talking To Yourself

Authenticators

@ Indicate that user has gone through login

Plaintext
process EEEEREEN
@ Used instead of HTTP auth
@ Implies or includes login name (usually) Key — = B,‘E?f;ycgfig:r
@ Can't be stored plaintext, so typically |
encrypted: C = Ex(P) EEEEEEEN
Ciphertext

o C is ciphertext (stored in cookie), K is key, P
is plaintext (identifier)

Travis H. Web App Cryptology

Background Bay Area Hacker's Association
Why Study Failure?
Where Crypto Is Needed in Web Apps
Authenticators

Talking To Yourself

Normal Encryption

sender recipient

@ Sender sends message through Internet to recipient

@ Large number of sender/recipient pairs suggests PK

Travis H. Web App Cryptology

Your Problem

Background

Bay Area Hacker's Association

Why Study Failure?

Where Crypto Is Needed in Web Apps
Authenticators

Talking Yourself

Website

<€

@ Sending data to yourself through the browser

Travis H.

Web App Cryptology

WSJ.com Security Fail Unix crypt(3)
WSJ.com Flaw 1
WSJ.com Flaw 2
WSJ.com Flaw 3

About Unix crypt(3)

@ Library function used for hashing system passwords; not
encryption routine!

@ Is really close to DES encryption of a plaintext of all-zeroes
using the input as the key

@ Inputs reversed from most encryption routines

@ Depends on being unable to determine the key given the
ciphertext

Travis H. Web App Cryptology

WSJ.com Security Fail Unix crypt(3)
WSJ.com Flaw 1
WSJ.com Flaw 2
WSJ.com Flaw 3

Crypting with Salt

@ 12 bits of “salt” used to perturb the encryption algorithm, so
off-the-shelf DES hardware implementations can’t be used to
brute-force it faster

@ Salt should be random, else identical passwords hash to
identical values

@ Salt and the final ciphertext are encoded into a printable string
in a form of base64

Travis H. Web App Cryptology

WSJ.com Security Fail Unix crypt(3)
WSJ.com Flaw
WSJ.com Flaw
WSJ.com Flaw

How Unix crypt(3) Works

o
2]
o
o
o
o

User's password truncated to 8 characters, and those are
coerced down to only 7 bits ea.

Forms 56-bit DES key

Salt used to make part of the encryption routine different
That is then used to encrypt an all-bits-zero block:
crypt(s,x) = s+ Ex(0)

Iterate 24 more times, each time encrypting the results from
the last round

Repeating makes it slower (on purpose)

Travis H. Web App Cryptology

WSJ.com Security Fail Unix crypt(3)
WSJ.com Flaw 1
WSJ.com Flaw 2
WSJ.com Flaw 3

WSJ.com Flaw #1

WSJ Authenticator
@ let + be concatenation

@ Unix crypt (salt, username + secret string)
@ = salt + encrypted data
°

= WSJ.com authenticator

@ Hint: Where is the secret string located?

Travis H. Web App Cryptology

WSJ.com Security Fail Unix crypt(3)
WSJ.com Flaw 1
WSJ.com Flaw 2
WSJ.com Flaw 3

WSJ.com Long Name Instant Fail

*]
]
]
]
]
]

Unix crypt(3) only hashes 8 octets, so truncates input string
crypt(s,” dandylionSECRETWORD") = crypt(s,” dandylio™)
Pick an 8 character username

Pick a salt

Do the crypt yourself

Presto: you have a valid authenticator for that username w/o
knowing secret string

Travis H. Web App Cryptology

WSJ.com Security Fail Unix crypt(3)
WSJ.com Flaw 1
WSJ.com Flaw 2
WSJ.com Flaw 3

WSJ Failure #1

o crypt(3) is
not a
encryption
routine

@ wrong tool
for the job

Travis H. Web App Cryptology

WSJ.com Security Fail Unix crypt(3)
WSJ.com Flaw 1
WSJ.com Flaw 2
WSJ.com Flaw 3

WSJ.com Salt Failure

@ Usernames identical in the first 8 letters had identical
authenticators

@ Thus interrogative adversary can observe salt was fixed
constant in the program

@ Means that | can use one authenticator with another user’s
login
@ Assuming both usernames start with same 8 characters

Travis H. Web App Cryptology

WSJ.com Security Fail Unix crypt(3)
WSJ.com Flaw 1
WSJ.com Flaw 2
WSJ.com Flaw 3

WSJ.com Failure #2

@ No two
authenticators
should be the same

e LOLWTFRU
DOING?

Travis H. Web App Cryptology

WSJ.com Security Fail Unix crypt(3)
WSJ.com Flaw 1
WSJ.com Flaw 2
WSJ.com Flaw 3

WSJ.com Flaw #3

WSJ Authenticator
@ crypt (salt, username + secret string)

@ = salt + encrypted data
@ = the WSJ.com authenticator

Hint: This problem allows you to recover the secret string easily

Travis H. Web App Cryptology

WSJ.com Security Fail Unix crypt(3)
WSJ.com Flaw 1
WSJ.com Flaw 2
WSJ.com Flaw 3

Adaptive Chosen Message Attack

WSJ Authenticator
@ crypt (salt, username + secret string)

00060 O©O0

Register username “failfai”

compute crypt(s, “failfaiA”) and see if that’s a valid
authenticator for user failfai

If not, pick a different letter and try step 2 again.
If it is, you know first letter of secret string.
Reduce username length by one, register it and jump to step 2

When this stops working you've gotten all of the key

Travis H. Web App Cryptology

WSJ.com Security Fail Unix crypt(3)
WSJ.com Flaw 1
WSJ.com Flaw 2
WSJ.com Flaw 3

WSJ Flaw #3

@ By adaptive chosen message attack, can be broken in 128x8
iterations instead of 1288

@ Each query took 1 second
@ Secret string was “March20”
Time is O(n) instead of O(c")
@ ACMA gives full key recovery in 17 minutes
@ ...Instead of 2x10%years

Travis H. Web App Cryptology

WSJ.com Security Fail Unix crypt(3)
WSJ.com Flaw 1
WSJ.com Flaw 2
WSJ.com Flaw 3

WSJ Epic Fail

@ 17 minutes to
recover
“secret”

ancient

analytic
technique
going back to
TENEX

systems

Travis H. Web App Cryptology

Random Number Generation

Hashes

ECB mode

Chained Block Cipher Modes

Encrypting When You Need Integrity Protection

Bad Crypto Generally

Poor Random Number Generation

*]
*]
*]
]
]

The best crypto can’t save you from a broken RNG
Netscape SSL flaw (1995)

MS CryptGenRandom (Nov 2007)

Dual EC_DRBG (Aug 2007)

Debian OpenSSL (May 2008)

Travis H. Web App Cryptology

Random Number Generation
Bad Crypto Generally Egthenswde
Chained Block Cipher Modes
Encrypting When You Need Integrity Protection

Hashes Generally

@ Cryptographic hashes are one way functions
@ Given input, it's easy to compute output
@ Given the output, it's difficult to compute input

@ Tiny change in input = big change in output

Travis H. Web App Cryptology

Random Number Generation

Hashes

ECB mode

Chained Block Cipher Modes

Encrypting When You Need Integrity Protection

Bad Crypto Generally

Hashing With No Salt

@ Allow user to pick secret s - easy to guess

@ Don't want to store user secrets in plaintext form
@ Pass through a (crypto) hash instead, store digest
@ Any guesses what is wrong with this?

Travis H. Web App Cryptology

Random Number Generation

Hashes

ECB mode

Chained Block Cipher Modes

Encrypting When You Need Integrity Protection

Bad Crypto Generally

Hashing With No Salt Flaw

@ Simply hash all likely secrets

@ Already done in rainbow tables you can download

Travis H. Web App Cryptology

Random Number Generation

Hashes

ECB mode

Chained Block Cipher Modes

Encrypting When You Need Integrity Protection

Bad Crypto Generally

Rainbow Tables

E'kamw =") jimbn é:)'::-VUdW“_::bE roo troat E
G Sl feessaaaiy

U - N R - P
 kolscx (e aurieh | e entpy [E=> 1 myname ¢

,,,,,, S Bl iee Rioeiiny Hi b Be epins H i e b
E passwd d} dlcm4 @ cultuve E@:: reSxes‘E=>§ cryplo f@:“ 1tiko :::}; hnux23 E

@ Essentially a clever way to store precomputed hashes
@ Easy to download for most hashes over alphanumerics

@ Can easily look up any unsalted precomputed hash

Travis H. Web App Cryptology

Random Number Generation

Hashes

ECB mode

Chained Block Cipher Modes

Encrypting When You Need Integrity Protection

Bad Crypto Generally

Hashing With Salt

@ Whenever you're hashing weak (easy to guess) secrets

@ Always prepend a unique, random byte series to the secret and
the hash output

@ salthash(s,i) = s+ hash(s+1)

@ | recommend using as many bits of salt as your hash has
output

@ This guarantees rainbow tables would have to hash every
input, not just likely inputs

Travis H. Web App Cryptology

Random Number Generation
Bad Crypto Generally Egthenswde
Chained Block Cipher Modes
Encrypting When You Need Integrity Protection

Password Hashing Alternatives

@ Use HMAC (described later) instead of simple hash, with salt
as the key

@ Better yet, use PBKDF2 for passwords. This iterates 1000
times (recommended minimum) on each password, making
cracking passwords much more time consuming.

Travis H. Web App Cryptology

Random Number Generation

Hashes

ECB mode

Chained Block Cipher Modes

Encrypting When You Need Integrity Protection

Bad Crypto Generally

t Is ECB Mode?

Plaintext Plaintext Plaintext
S e = T
v _ v v
Block Cipher Block Cipher Block Cipher

Key —= Encryption Key =| Encryption Key = Encryption

' v 1
1 1 Il Il

Ciphertext Ciphertext Ciphertext

Electronic Codebook (ECB) mode encryption

G = Ex(P;) done independently for each block of plaintext

Travis H. Web App Cryptology

Random Number Generation

Hashes

ECB mode

Chained Block Cipher Modes

Encrypting When You Need Integrity Protection

Bad Crypto Generally

ECB Block Swapping

@ Adversary can swap ciphertext blocks around and effectively
swap plaintext blocks around without breaking crypto

o AAAAAAAABBBBBBBB can be changed to
BBBBBBBBAAAAAAAA

Travis H. Web App Cryptology

Random Number Generation

Hashes

ECB mode

Chained Block Cipher Modes

Encrypting When You Need Integrity Protection

Bad Crypto Generally

ECB Block Repetition

@ Any plaintext block that repeats later in the stream will show
repetition in the ciphertext

@ The blocks above show a pattern of ABBBAACA

o Fails to destroy macroscopic patterns in the plaintext; any
pattern that is present above the block level remains a pattern
in the ciphertext.

Travis H. Web App Cryptology

Bad Crypto Generally

Using ECB Mode

plaintext ECB chained modes

Travis H. Web App Cryptology

Random Number Generation

Bad Crypto Generally E‘éthiode
Cipher Modes

Nhen You Need Integrity Protection

ECB FAIL

o Still looks like Tux to me

@ Block-level patterns (or bigger) still visible in encrypted output

Travis H. Web App Cryptology

Random Number Generation

Hashes

ECB mode

Chained Block Cipher Modes

Encrypting When You Need Integrity Protection

Bad Crypto Generally

What Is CBC Mode?

Plaintext Plaintext

Plaintext
I I I I I I
Initialization Vector (IV)
1 Il - . -
v ' v
Block Cipher Block Cipher Block Cipher
Key =| Encryption Key —=| Encryption Key + | Encryption
v ' [
I I L I I I
Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption

@ Most common chained block cipher mode

@ The output of the block cipher function is XORed with the
next plaintext block

@ First plaintext block is XORed with an Initialization Vector
(1v)

@ This makes each ciphertext unique

Travis H. Web App Cryptology

Random Number Generation

Hashes

ECB mode

Chained Block Cipher Modes

Encrypting When You Need Integrity Protection

Bad Crypto Generally

CBC Mode Fixed IV Flaw

*]
*]
*]
]
]

Typically sites use same key for every user

You make mistake of using fixed IV for every entry
This means two of the three inputs are identical, so:
Identical plaintexts encrypt to identical ciphertexts

What if you were encrypting a password database?

Travis H. Web App Cryptology

Random Number Generation

Hashes

ECB mode

Chained Block Cipher Modes

Encrypting When You Need Integrity Protection

Bad Crypto Generally

Encrypting When You Need Integrity Protection

Most people who think of crypto think of encryption.
Your session |Ds probably don’t need to be confidential
Your session |Ds probably do need to be returned unmodified

Your session |IDs probably do need to be unforgeable

e © ¢ ¢ ¢

Encryption is almost always wrong for this (see my other
presentation)

Travis H. Web App Cryptology

Random Number Generation

Hashes

ECB mode

Chained Block Cipher Modes

Encrypting When You Need Integrity Protection

Bad Crypto Generally

Implications of No Integrity Protection

@ Fiddling with ciphertext usually corrupts at least one block

o If you're lucky, a randomly-corrupted block will yield a
syntactically-invalid plaintext string

“Shallow men believe in luck. Strong men believe in cause and
effect.”
— Ralph Waldo Emerson

Travis H. Web App Cryptology

Random Number Generation

Hashes

ECB mode

Chained Block Cipher Modes

Encrypting When You Need Integrity Protection

Bad Crypto Generally

Ve

No Integrity Protection Fail

| | BN
Epic Fail

Travis H. Web App Cryptology

Message Authentication Codes
CBC-MAC

One- Hash Function MAC
HMA

No Public-Key Needed

Message Authentication Codes

@ Want a way to verify data haven't been tampered with

@ Hash isn’t enough; could tamper with data and recompute
hash

@ We need something like a “keyed hash”

@ Several attempts made before finding a secure solution

Travis H. Web App Cryptology

Message Authentication Codes
CBC-MAC

o y Hash Function MAC
HMAC

No Public-Key Needed

CBC-MAC

@ Encrypt the message in CBC or CFB mode

@ Hash is last encrypted block, encrypted once more for good
measure

o CBC form specified in ANSI X9.9, ANSI X9.19, ISO-8731-1,
ISO 9797, etc.

@ Let's review CBC mode

Travis H. Web App Cryptology

Message Authentication Codes
CBC-MAC
On /ay Hash Function MAC

MAC
No Public-Key Needed

CBC Mode

Plaintext Plaintext Plaintext
[TTTTT [TTTTTT [TTT
Initialization Vectar {IV)
50 I = £ -y -
U . T 1
Block Cipher Block Cipher Block Cipher
Key = Encryption Key —=| Encryption Key * | Encryption
v | ¥
25 8 P Y 550 P4 S5 0 156 7 O |
Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption

@ Can anyone guess the problem in using last ciphertext for
MAC?

Travis H. Web App Cryptology

Message Authentication Codes
CBC-MAC

One-Way Hash Function MAC
HMAC

No Public-Key Needed

CBC-MAC Vulnerability

Recipient must know the key
Recipient can decrypt the MAC with the key

°
°

@ Block ciphers are reversible

@ Therefore, can create preimages with the same MAC value
°

Not really a big deal if you're the sender and recipient

Travis H. Web App Cryptology

No Public-Key Ne d

CBC-MAC Fail

@ Reversible - no
preimage resistance

Travis H. Web App Cryptology

Message Authentication Codes
CBC-MAC

One-Way Hash Function MAC
HMAC

No Public-Key Needed

Bidirectional MAC

@ First compute CBC-MAC of message
@ Then compute CBC-MAC of blocks in reverse order
@ Broken by C.J. Mitchell in 1990

@ Exact vulnerability is unclear, but appears to suffer from same
problem as CBC-MAC

Travis H. Web App Cryptology

Message Authentication Codes
CBC-MAC

One-Way Hash Function MAC
HMAC

No Public-Key Needed

One-Way Hash Function MAC

@ Alice and Bob share key K

@ Alice wants to send Bob a MAC for message M
e MAC=H(K+ M)

@ What is wrong with this method?

Travis H. Web App Cryptology

Message Authentication Codes
CBC-MAC

One-Way Hash Function MAC
HMAC

No Public-Key Needed

[terative Hash Function Construction

H ; :
3 :
: :
Berrsrerrrsrrgrerassrsnasd
H
H
- - = - g

:m'rqwamim mﬁmﬂn compression i
W ™| function [™| function function }

TErmman® - - -

Compression function is one-way, 1V is usually fixed

Travis H. Web App Cryptology

Message Authentication Codes
CBC-MAC

One-Way Hash Function MAC
HMAC

No Public-Key Needed

One-Way Hash Function MAC

message
block n... i

:
:
Berrsrerrrsrrgrerassrsnasd

i 1 W MW compression
W) function [function | function i

Assume secret is one block, message is one or more blocks; where is
the flaw?

Travis H. Web App Cryptology

Message Authentication Codes
CBC-MAC

One-Way Hash Function MAC
HMAC

No Public-Key Needed

One-Way Hash Function MAC Broken

Anyone can tack data onto the end of the message and generate a
new MAC

Travis H. Web App Cryptology

Authentication Codes

One-Way Hash Function MAC

With Merkle-Damgaard Strengthening

........
e .

Hashes can be strengthened against length-extension attacks by

encoding the length as padding
See any problems with this?

Travis H. Web App Cryptology

Message Authentication Codes
CBC-MAC

One-Way Hash Function MAC
HMAC

No Public-Key Needed

One-Way Hash Function MAC Broken

With Merkle-Damgaard Strengthening

on

ion e 2l P
function

ol
function | function.. ||

] ion comp ion
function function...

Anyone can still tack data and a new length onto the end of the
message and generate a new MAC
Netifera found this vuln in Flickr APl in Sep 2009

Travis H. Web App Cryptology

Message Authentication Codes
CBC-MAC

One-Way Hash Function MAC
HMAC

No Public-Key Needed

Questionable One-Way Hash Function MACs

@ Prepend message length - cryptographer B. Preneel is
suspicious
@ Better to put secret key at end of hash: H(M + K) - this has
B. Preneel suspicious too
@ Collisions in hash make this MAC malleable

o Still better is H(K+ M+ K) or H(K1 + M+ K3) - Preneel still
finds suspicious

Travis H. Web App Cryptology

Message Authentication Codes
CBC-MAC

One-Way Hash Function MAC
HMAC

No Public-Key Needed

One-Way Hash Function MAC Falil

Campbells
" Microwavable Bowels

= FAIL

Regular L
With s1 0 Price 4

g Card Prafested Card
- 10 - Savings U

§ @ Many have tried

@ Few win

Whan Yo

Travis H. Web App Cryptology

Message Authentication Codes
CBC-MAC

One-Way Hash Function MAC
HMAC

No Public-Key Needed

Other One-Way Hash Function MACs

o H(Ki+H(Kx+ M))

o H(K+H(K+ M))

@ H(K+p+ M+ K) where p pads K to full message block

@ Concatenate 64 bits of key with each message block in hash

All of these seem secure but there's no proof
Given the history it's wise to be skeptical

Travis H. Web App Cryptology

Message Authentication Codes
CBC-MAC

One-Way Hash Function MAC
HMAC

No Public-Key Needed

Aside: Stronger Hashes

Full Merkle-Damgaard Construction

Message| Message Message,
block 1| block 2 block n
Messagd Message Message| Length
block 1| block 2 black n | padding

(IR T
(oo bl o el o TG

If finalization function is one-way, length extension attacks against
the hash are not possible.

Travis H. Web App Cryptology

Message Authentication Codes
CBC-MAC

One-Way Hash Function MAC
HMAC

No Public-Key Needed

HMACk = h((K @ opad) + h((K @ ipad) + m))
opad = 0x5c5chc...5¢5c
ipad = 0x363636...3636

| HMAC(k;m) |

i

Doesn't make sense but comes with a proof of correctness.

Travis H. Web App Cryptology

Authentication Codes
CBC-MAC
One- y Hash Function MAC
HMAC
No Public-Key Needed

HMAC Win

Travis H. Web App Cryptology

Message Authentication Codes
CBC-MAC

One-Way Hash Function MAC
HMAC

No Public-Key Needed

Deriving Multiple Keys From One

Standard way is to seed a PRNG, but they are the least
well-analyzed crypto primitives.
Here is a way to use HMAC to do it.

making two keys from one

Given secret s, derive two keys (k'and k?) from it
k! = HMAC(s,"1")
k? = HMAC(s,"2")

Given either or both keys will not help you retrieve s or any other k
derived from s

ot

Travis H. Web App Cryptology

Message Authentication Codes
CBC-MAC

One-Way Hash Function MAC
HMA

No Public-Key Needed

No Public-Key Needed

‘ symmetric ‘ asymmetric

encryption cipher PK encryption
integrity MAC dig sig

@ All parameters sent to web browsers come back to your server,
so you don’t need asymmetric crypto

@ Except HTTPS/SSL/TLS of course, but that is all cookbook

Travis H. Web App Cryptology

Wordpress Cookie Integrity Protection Vulnerability
More Web Security Flaws

Wordpress Cookie Integrity Protection Setup

Wordpress Cookie Construction
@ let | be a seperator character of some kind

@ authenticator = USERNAME + | + EXPIRY _TIME + | +
MAC

o MAC = HMAC-MD5x (USERNAME + EXPIRY _TIME)

USERNAME The username for the authenticated user
EXPIRY TIME When cookie should expire, in seconds since epoch

Any guesses as to the flaw?

Travis H. Web App Cryptology

Wordpress Cookie Integrity Protection Vulnerability
More Web Security Flaws

Wordpress Cookie Integrity Protection Vulnerability

o HMAC-MD5(USERNAME + EXPIRY _TIME)

@ HMAC didn't put a delimiter between username and expirytime

Travis H. Web App Cryptology

Wordpress Cookie Integrity Protection Vulnerability

More Web Security Flaws

Wordpress Cookie Integrity Protection Attack

@ Ask site to create authenticator for username “adminQ”, then
create forged authenticator:

Forged Authenticator

@ authenticator = “admin” + | + EXPIRY_TIME; + | +
HMAC-MDS(“admin0’+EXPIRY _TIMEp)

@ “admin” + EXPIRY _TIME;= “admin0” + EXPIRY _TIME;

@ The HMAC-MD?5 block was from the admin0 account cookie

@ EXPIRY _TIME;jis the same as EXPIRY _TIMEjbut lacks a
leading zero

@ Due to second equality, MAC verifies properly
@ Tricky attack that is solved by using unambiguous formatting

Travis H. Web App Cryptology

Wordpress Cookie Integrity Protection Vulnerability
More Web Security Flaws

Wordpress Fails It!

o Crypto
payloads need
unambiguous
representa-

dvd_rewinder.gif tions

@ That's why
we have
ASN.1, but it
would be
overkill

Travis H. Web App Cryptology

e © © 6 ¢ ¢ ¢ ¢

Don't Do This
Suggestions

Do This

Don’t use ECB mode

Don't use stream ciphers such as RC4
Don’t use MD5 hashes, or even SHA-1
Don't reuse keys for different purposes
Don't use fixed salts or IVs

Don'’t roll your own cipher

Don't rely on secrecy of a system

Don’t use guessable values as random numbers or PRNG seeds

Travis H. Web App Cryptology

Don't Do This
Suggestions

Suggestions

o Keep it simple as it can be but no simpler
@ Understand the cryptographic properties of the tools
@ Assume adversary knows all but the keys

@ Always strive for unambiguity in your plaintexts and ciphertext
blocks

Travis H. Web App Cryptology

Specific Suggestions

@ When in doubt, use:

o

¢ © ¢ ¢ ¢

AES256 mode for encryption (CBC mode unless you're mixing
data sources)

HMAC-SHA512 for integrity protection

SHA-512 with salt for hashing

PBKDF?2 for stored passwords or key derivation
/dev/urandom on Unix

RtlGenRandom/CryptGenRandom from ADVAPI32.DLL on
MSWin

Travis H. Web App Cryptology

Appendix For Further Reading

For Further Reading |

[The Cookie Eaters
http://cookies.lcs.mit.edu/

[OWASP5037 - Cryptography for Penetration Testers by Chris
Eng
http://video.google.com/videoplay?docid=-518702259268237

@ Cryptography - Theory and Practice by Steve Weis
https://www.youtube.com/watch?v=IzVCrSrZIX8

@ Crypto Strikes Back! by Nate Lawson
https://www.youtube.com/watch?v=ySQ1ONhW1JO

Travis H. Web App Cryptology

http://cookies.lcs.mit.edu/
http://video.google.com/videoplay?docid=-5187022592682372937&hl=en
https://www.youtube.com/watch?v=IzVCrSrZIX8
https://www.youtube.com/watch?v=ySQl0NhW1J0

	Background
	Bay Area Hacker's Association
	Why Study Failure?
	Where Crypto Is Needed in Web Apps
	Authenticators
	Talking To Yourself

	WSJ.com Security Fail
	Unix crypt(3)
	WSJ.com Flaw 1
	WSJ.com Flaw 2
	WSJ.com Flaw 3

	Bad Crypto Generally
	Random Number Generation
	Hashes
	ECB mode
	Chained Block Cipher Modes
	Encrypting When You Need Integrity Protection

	MAC
	Message Authentication Codes
	CBC-MAC
	One-Way Hash Function MAC
	HMAC
	No Public-Key Needed

	More Web Security Flaws
	Wordpress Cookie Integrity Protection Vulnerability

	Summary
	Don't Do This
	Suggestions

	Appendix

